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The problem of stable plane capillary-gravitational waves of finite amplitude 
on the surface of a perfect incompressible fluid stream of finite depth is consi- 

dered. It is assumed that the waves are induced by pressure periodically distri- 
buted along the free surface, and that these, unlike induced waves,do not vanish 

when the pressure becomes constant, are transformed into free waves. Such waves 
are called composite; they exist similarly to free waves?for particular values 

of velocity of the stream. 

The problem, which is rigorously stated, reduces to solving a system of four 
nonlinear equations for two functions and two constants. One of the equations 

is integral and the remaining are transcendental. Pressure on the surface is de- 
fined by an infinite trigonometric series whose coefficients are proportional to 

integral powers of some dimensionless small parameter ; these powers are by 
two units greater than the numbers of coefficients. 

The theorem of existence and uniqueness of solution is established, and the 
method of its proof is.indicated. The derivation of solution in any approxima- 

tion is presented in the form of series in powers of the indicated small parame- 
ter. Computation of the first three approximations is carried out to the end,and 
an approximate equation of the wave profile is presented. 

Composite capillary-gravitational waves in the case of fluid of infinitedepth 

were considered by the author in [l]. 

1. Statement of problem and derivrtion of bralc aqurtionr. 
Let us consider a steady plane-parallel motion of a perfect incompressible heavy fluid 
of finite and constant depth h bounded from above by a free surface subjected to pres- 

sure PO = PO* + PO (z), where po’ = const and po (z) is a specified function of 
the horizontal coordinate x. We assume that the mean velocity c of the stream at the 
horizontal bottom is constant, is specified and directed from left to right. The term 
pi (5) indicates the presence of induced waves at any velocity c. In the absence of 

p. (5) free waves appear in the stream at certain particular values of c. Here it is as- 
sumed that pressure at the free surface is defined by the two terms. In this case the free 
surface in coordinates attached to the progressing wave moving at velocity c has the 
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shape of a stationary periodic wave. We are seeking waves which do not vanish for 

Ps (x1 s 0 and for particular values of c are transformed into free waves. Such waves 
are called composite waves. 

Let the unknown wave and the pressure ps (2) be symmetric about the vertical pas- 
sing through the wave crest. We take this vertical line as the y-axis of an orthogonal 
system of coordinates xg. We take point 0 of intersection of the y -axis with the wave 
crest as the coordinate origin and direct the it: - and y-axes to the right and upward, re- 
spectively. 

Wetake thezy-pfaneofflowasthep~eofthecompLexMriabbz=--+ ry.Wede- 
note the velocity potential by C+J , the stream function by 9 , the complex velocity po- 
tential by w = cp + iJr , and the projections ‘of the velocity vector q on the coordi- 
nate axes by U and V , We have 

dw I dz = - U + iv, U = - 39 J 3x, V = - L$ J i$j 

To derive the basic equations for this problem we, first, conformally map the region 
occupied by the wave and consisting of a vertical rectangle bounded from above by a wave- 
Eke curve on rectangle O< cp ,<ch, 0 < 9 < go in the w-plane (here II, = q. = ch 
is the stream flowrateper unit of time). This rectangle is then mapped on the interior 
of a circular ring whose center lies at the coordinate origin of the auxiliary complex 
plane u = u1 f ius. The wave length ?,, is assumed to correspond to the periodicity 
of function po (z). The last transformation is defined by formula 

w=$lu (1.1) 

With this transformation the segment 0 < Q, < &, which corresponds to the free 
surface becomes the circumference of the outer crrcle of radius unity, and the segment 
corresponding to the bo.ttom. becomes the circumference of the inner circle of radius 
.ro = exp (--an*0 / cpo) = oxP (--2n;h J h) which is smaller than unity. The ring 
is slit along segment (ro, 1). It is assumed’that h and h, and consequentIy,also. rs 
are specified. The image of this ring of the u-plane onto the region of one wave in 
the s-plane is determined by formula 

dz h t?MU) -=- 
du 7-, 

‘kc2 u 
o(u)-=Q) +iz (1.2) 

From (1.1) and (1.2) we obtain dw / dz = - ce+-iO. This implies that throughout 
the stream, function CD is equal to the angle between the velocity vector q and the 
s);axis, and 

q=lql=ce (1.3) 

Since function w (u) is holomorphic, it can be represented inside the considered ring 
of the u-plane by a Laurent series. It can be shown that the coefficients of that series 
must be real in virtue of the symmetry of the wave and pressure po (z) . It is also pos- 
sible to satisfy the boundary condition at the bottom. 

For r.~ = e*@ (0 is the angle between the radius vector and the %-axis) (1.2) yields 
a differential relation which,after separation of real and imaginary parts and integration, 
yields for the wave shape the parametric equation 

0 9 

h * 
x= -2R s t?(q) cos 0 (TJ) dq, y = - -&- \ e-.7(n) sin CD(~) Q (1.4) 

0 0 
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-T h> = ‘5 (I, rl), (-II (rl) = @ (1, tl) 
It follows from (1.4) that solution of the problem requires the determination of r (0) in 
addition to 0 (0). The expansion of function w (u) shows that these functions can be 
represented by the following trigonometric series: 

-r(Q=& + i A,coSrZ@, O(e)= 5 &,qinn(j (1.5) 
?%=I n=1 

Expansions (1.5) satisfy the condition of wave symmetry about the vertical passing 
through its crest. From the Laurent expansion of function o (u), which satisfies the con- 
dition of flow at the bottom, we obtain 

A,, =&Bn (n = 1, 2, . . .) (1.6) 

where v,,” are determined by formulas (1.18). Thus, if B, are known, it is possible to 
determine by (1.6) all A,,, except A,,. 

To determine the boundary condition at the surface we use the Bernoulli integral 

p I p = c - .gJ - v,9= (1.7) 

where C is a constant, g is the acceleration of gravity,and p is the density. At the 
free surface the pressure difference is balanced by the normal component of surface ten- 
sion force. For these forces by the Laplace law we have 

P-~o=fp/R (1.8) 

where P is the pressure from the fluid side, PO = PO’ + po (z) is the pressure from 
the free surface side. ~1 is the capillary constant,and R is the radius of curvature at 
points of the surface. Expressing curvature in terms of da / de from (1.8) we obtain 

p-pa-z .++ (1.9) 

Substituting p defined by (1.9) into (1.7) and allowing for (1.3), we obtain 

d@ 

dB= 
y &-+ _ e7 _ +tyf?-’ -po*(2)e-~] (1.10) 

@P 
V=*, 

& = 2(CP-D’) 
pea ’ 

x=&_ 
nc= ’ 

po* (z) = 9 (1.11) 

where x and y are determined by formulas (1.4) in terms of 8 . We separate in the 
right-hand part of (1.10) terms that are linear with respect to @ and T taking into 
account the formula for y , and obtain 

*=y ij 
e 

de t --1+(6+1)‘6+ x qq)dTp--S(e)(l -T) + 
s 

(1.12) 
0 

FIT, @, S, 61 
1 

F [r, @, S, 61 - 6 (e-7 - i + z) - (e7 - 1 - z) + 
0 

36 ,S Ie-+) sin 0 (q) - @ (q)j dq - x tj CD (11) dq + 
0 

XC+ eO(q)dq-S((8)(e-‘-1+z) s 
0 
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It is assumed here that 

ps* (z) = ; en+%, cos + 2, s (0) = PO* [z (011 (1.13) 
n=1 

where e is a small positive dimensionless parameter and d,, are specified real numbers, 
is correct to within the constant included in po’ , and the series Zen&, converges in 
circle es > 0. To obtain S (0) it is necessary to substitute into (1.13) values of 
x (0) / jt, defined by the equation 0 

= (9) 1 -=-- 
a 2n s 

e-‘(n) cos CD (9) dq (1.14) 

which follows from (1.4). 
0 

Let us determine more accurately the formulas for parameters. In the case of free 
waves S (t3) 5 0 and, as can be shown, it is necessary to set cs = ce3 (1 - a’) , 

where c*s is defined for a free linear capillary-gravitational wave of length 1 by .the 
following formula [Z]: 

c** = 
( 
~+&)th(2rc$) 

Taking into account the definition (1.11) for c, we obtain 

(1.15) 

The substitution of these expressions into (1.12) yields 

$+-VW{&i +(*+i)r+%+qWl+ (1.17) 

0 

b 

x0 5 e'"p(wl-w)(~ -r)+Pt7,Q),S,8l}-_v(Ok’{...) 
n=1 0 

where the expression omitted in the second set of braces is the same as in the first set. 
Formula (1.17) determines the relation between functions 0 (0) and 7 (0) at the 

circumference 1 u 1 = 1 of the ring plane u . It is shown in the theory of analytic 
functions that along that particular circumference the following formulas which follow 
from Villat’s formulas [S] for a ring and generalize Dini’s relationships for a circle: 

-r(e)-a.=[K(q,e)~dq, (1.18) 

” 

v’-n 
1 - r-in 

n- 
i+ rr =nth(2nn+ v,,“= :+; = 

ncth (2mf) , v,,‘v,,” = na 
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We transform the terms linear with respect to Z, 0 and e , which appear in braces, 

using formulas (1.18) and integrating by parts. We then combine in the first braces the 
terms (with coefficients 2 and -31s) with the same integrand dQ1 / dq and different 
kernels 

The constants Y(O) and x0 that appear in Eq. (1.17) are assumed to be specified, and 6 
is determined by the condition of periodicity of @ (I3 + 2%) = rb I@), Since the right- 

hand part of Eq. (1.17) contains a, its solutions, as well as 8 depend on .a. Let us set 

6 = 6, + 6’ (e) (1.19) 

The condition of periodicity for e --t 0 implies that 6, = 1, since then the quanqty 
6’ (Is) and also the solutions tend to zero. Equation (1.1’7) after all these transforma- 

tions with allowance for (1.19) assumes the following final form: 

5(O)=% ~9*~~,e)E(rl)dg+6’(e)+(2+~‘(e))A,+ 
( 

(1.20) 
0 

oc e 

6(fl,e)+-, Y(9,e)=xoCe2”f~(rl)drl- 
n=l 0 

where v, are eigenvalues, ‘pn (0) are eigenfunctions of kernel K* (Q 0) , and the dots 

in the second set of braces replace the last six terms identical to those in the first set. Fur- 
thermore it is assumed that v(O) = Y% ,and that parameter x,, is such that the eigenva- 
lue y1 is simple and positive [2]. 

Note that for vf”) = v1 we obtain the required formula for ~~2, since relationship 
(1.15) follows from formulas (1.20) and (1.16) for vn, and for v(O)and x,, , respectively. 

The periodicity condition for function 6, (0) yields 
srr 

. 6’(e) = - x0 5 K,(~,0)5(r)d’l-(23_6’(e))A”+ (1.21) 
” 

s’(e)+(2+6’(s))Ao+~‘~ Ka(Q’)S(q)df~ - 
0 I 

2x 

1 --ES 
. s y(e,9de 

2n 0 
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As previously noted, it follows from (1.6) that having determined dCpid0 and tD (@),we 
obtain& and A;for n = 1, 2, . . . It remains to determine A,. 

Setting in the right-hand part of the first of formulas f 1.4) (j = 2n, we must obtain in 
the left-hand part --h, since then 2 decreases by h. This yields for A,, the following 
equation : ax 

exp (- A,,) = & \ exp [- z (q) - A,] cos Q, (q) dq (1.22) 

(- x frl) - As does not contain is by vittue of ( 1.5) ). 
The problem thus reduces to the determination of functions 6 (0, e) = dQ, / ($3, 5 (0, 

a) / h ,and constants 6 = 1 + 6’ (a) and A0 (a) from the system of non&mar equa- 
tions (l.14),( l.20),( l,21) and (1.22). Parameter z (8, a) is obtained from (LLB), and 

(1.23) 

By eliminating x (6, e) and A o (e) from Eqs. (1.20) and (1.21) with the use of 
(1.14) and (1.22). and taking 7 (0, e) as defined in (1.18) and Q, (0, e) in (1.23)) 
the system of equations reduces to two : (1.20) and (1.21). Equation (1.20) is a nonlinear 
integral equation in 6 (8, a) with kernel K* (sb 9) and parameter Y(O) = vr , and is 
transcendental with respect to 6’ (e). Equation (1.21) is nonlinear and transcendental 
with respect to 6’ (e) with a linear functional relative to the unknown function. It is, 
however, more convenient not to carry out this transformation and to consider the sys- 
tem of four equations. In that case the only nonlinear integral equation is (1.20) in 
i (8, a), while the remaining, including (1.20) are to be considered as nonlinear trans- 
cendental equations with respect to x (8, e) I I and constants 6’ (8) and A0 (e) with 
linear operators and functionals relative to the unknown functions. 

2. Solution of brrfc equrtfonr of the problem, Solutionofthesys- 
tern of Eqs.( 1.14),( 1.20),( 1.21) and (1.22) is sought in the form of series in powers of 
parameter a. For each coefficient of the expansion of function 6 (8, a) we obtain a 
Fredholm linear integral equation of the second kind with kernel K* (Q 8) and para- 
meter v(Of = VI as the first eigenvalue of the latter, For the first coefficient of this 
expansion we obtain a homogeneous integral equation which is solved by the first Fred- 
holm theorem. For all subsequent approximations we have nonhomogeneous equations 
which are solved by the third Fredholm theorem. The solutions of each of such equations 
is expressed in the form of the sum of solutions of the first homogeneous equation with 
an indetermi~~ coefficient C,, (for the n-th appr~i~~on) and of the particular 
solution of the nonhomogeneous equation. Coefficient C, is determined by the con- 
dition of solvability of the equation for the (n + 2) -nd approximation. Thus each of 
the coefficients Cll, Cl8 and Cl8 is determined by the condition of solvability of 
equations for the third, fourth and fifth approximation. 

For the coefficients of expansions of remaining unknown quantities we obtain a sys- 
tem of linear algebraic equations. This system which is always solvable yields for the 
coefficients of a particular approximation explicit expressions in terms of quantities 
derived in preceding approximations. 

Determination of the first three approximations. Wepre- 
sett’t;rd approximation formulas for 5 (0, e), x (0, e) / h, 8’ (e) and A0 (8) 



988 Ia.I.Sekerzh-Zen’kovich 

5 (% e) = eC,, cos 0 + e2 C,, cos 28 + es (C,, co8 8 + C,,cos38) (2.1) 

z(%s)/h = -+CllsinO--& (~Cl12+--&C2~) x 
V2 

sin 28 + e3x3 (0) 

t!S (e) = - ex,Cll - es 
( 
i xoC2~ + 2A02 - i -$ Cllz 

) 
+ e%, 

A, (e) = e2A02 = e2 $(l - 1 /Vl’2)C$ 

where 

cl3 = 0 (*e (2.5)), Ca2 = - t$ Cl,” t,:Tv,, (2.2) 

VI% 
G3 = css* iv3 _ VI, 

where Cs8* is a linear function of Clls and C,rC,,; za (0) is a linear function of 
sin 8 and sin 38 with coefficientsthatarelinearwithrespectto C,p, CIIC,s and Cl, 
at sin 8 and,also, with respect to Clls, CIIC,, and Css at sin 38; 8, is a linear 
function of C&s, CllCBB, Cll, C,, and Csa; Aol = Aes= 0; coeffkient Cr, was not 
computed,since the fifth approximation required for its determination was not calcula- 
ted; C,, is obtained from the equation (2.3) 

gC++cC1l-dl=O, p= ++ ‘,>’ (4+3wd+ 
Sxo2VlY2 

32~1” (VI - VI) 

Note that in the case of a free wave and d, = 0 ,(2.3) becomes the equation for 
C 11 

2.2. Determination of further approximations. As previously stated, 
coefficient C,, is determined by the condition of solvability of the equation for c, (f3) 
which reduces to the equation 

C&i2 
[ 
--&(% 7%‘i2) - ;&2+x,, v;;;;~~l~ ] = 0 (2.4) 

Hence 
c,, = 0 (2.5) 

since C,, # 0 and,as clln be readily shown, the expression in brackets is nonzero. 
It can be shown by the method of mathematical induction that,as in the case of n=3, 

we have L (O), z,, (0) , 6,, and A 0n uniquely determined for any positive integral 
n > 3. The equation for C,, is linear beginning with n = 2 , and the coefficient at 
C,, ia the same as in (2.4). 

9. Determfnation of thm wave profflo. the parametric form 5 (e, e) 
and g (0, s) of the wave profile equation us derived from formula (1.4) into which 
CD (6, s) and Z (0, e) are to be substituted. We recall the iimctions z (0, e) and 
@ (0, s) are defined in terms of 5 (0, e) by formulas (1.18) and (1.23). The elimi- 
nation of 8 from the parametric equations yields for the wave profile an equation of 
the form I/ = y (z, e). 

Setting k = 2~ / A , we obtain for the wave profile the equation 

y (5, e) = $ (EC11 (cos kLE - 1) + $- (+- C11- c,,) (1 - UJs 2kz)+ (3.1) 

~Cl.+~(~-~)~l13+~(~-~)C~~C22~ 
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CllCsr @OS 3kx - 4 
accurate to within third order terms, where coefficients C1, are determined by formulas 
(2.2X (2.3) and (2.5). 

N o t e . Since in accordance with the statement of the problem in Sect. I. the coor- 
dinate origin is located at the wave crest, hence for z close to zero D must be negative. 
The analysis of the principal term in (3.1) shows that this is so for C,, > 0. Because of 
this from Eq. (2.3) we find that we must have 4 > 0. The above must be taken into 
consideration in the analysis of solutions of Eq. (2.3). 

4. Rxirtsncrr rod uniquwwrr of rolutioa of tba problem, The 
following theorem is established by the ~~~-Sc~dt methods and their develop 
ment [4J. 

Theorem. The system of Eqs. (l.14), (1.20);( I.. 21) and ( 1.22) has the unique solu- 
tion 5 (0, e), 2 (9, a) / 5, A0 (8) and 6’ (a) (6’ (e)=6 (a) - 1) which is smallwith 
respect to a, continuous with respect to 9 (0 < 0 < 2n) t and is an analytic function 
of e for \ e I < S1 < Q. 

Proof of this theorem is similar to that presented in [Sj. 
This theorem implies the absolute and uniform convergence of series for CD (0, a) 

and T (0, a). The convergence of series in powers of e for the integrand functions in 
(1.4) follows from the general theorems of the analysis of the substitution of series into 
series. The convergence of series whose approximate sum is defined by formula (3.1) 
is determined by general theorems of analysis. 

N o te . When solving this problem, po* (z) was specified in the form (l. l3), which 
made it possible to obtain the solution in the form of series in integral powers of pan- 
meter a. If it is assumed that (lo 

it can be showu by the analysis of the bifurcation equation of the ~~ov-Sc~dt 
method that the series would have to be in &. 
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